
Azure Cosmos DB
Technical Deep Dive

Andre Essing
Technology Solutions Professional

Microsoft Deutschland GmbH

Andre advises customers in topics all around the

Microsoft Data Platform. Since version 7.0, Andre

gathering experience with the SQL Server product

family. Today Andre concentrates on working with

data in the cloud, like Modern Data Warehouse

architectures, Artificial Intelligence and new scalable

database systems like Azure Cosmos DB.

aessing/Andre_Essingandre.essing@microsoft.com /aessing @aessingandreessing.de

https://github.com/aessing
https://www.xing.com/profile/Andre_Essing
mailto:andre.essing@microsoft.com
https://www.linkedin.com/in/aessing
https://www.twitter.com/aessing
http://www.andreessing.de/

W H AT I S N O S Q L

NOSQL, BUILT FOR SIMPLE AND FAST APPLICATION

DEVELOPMENT

NoSQL, referring most times to “Non-SQL”, “Not Only SQL” or

also “non-relational” is a kind of database where the data is

modeled differently to relational systems.

• Different kinds available

• Document

• Key/Value

• Columnar

• Graph

• etc.

• Non-Relational

• Schema agnostic

• Built for scale and performance

• Different consistency model

D I F F E R E N T W AY S O F S T O R I N G D ATA W I T H Y O U R
M O D E R N A P P

Come as you are

Data normalization

SQL
MongoDB

Table API

Turnkey global

distribution

Elastic scale out

of storage & throughput

Guaranteed low latency

at the 99th percentile

Comprehensive

SLAs

Five well-defined

consistency models

A Z U R E C O S M O S D B

DocumentColumn-family

Key-value Graph

A globally distributed, massively scalable, multi-model database service

Leveraging Azure Cosmos DB to automatically scale

your data across the globe

This module will reference partitioning in the context

of all Azure Cosmos DB modules and APIs.

R E S O U R C E M O D E L

Account

DatabaseDatabaseDatabase

DatabaseDatabaseContainer

DatabaseDatabaseItem

Account

DatabaseDatabaseDatabase

DatabaseDatabaseContainer

DatabaseDatabaseItem

A C C O U N T U R I A N D C R E D E N T I A L S

********.azure.com

IGeAvVUp …

D ATA B A S E R E P R E S E N TAT I O N S

Account

DatabaseDatabaseDatabase

DatabaseDatabaseContainer

DatabaseDatabaseItem

DatabaseDatabaseUsers

DatabaseDatabasePermission

C O N TA I N E R R E P R E S E N TAT I O N S

Account

DatabaseDatabaseDatabase

DatabaseDatabaseContainer

DatabaseDatabaseItem

=
Collection Graph Table

C O N TA I N E R - L E V E L R E S O U R C E S

Account

DatabaseDatabaseDatabase

DatabaseDatabaseContainer

DatabaseDatabaseItem ConflictSproc Trigger UDF

D E M O

S Y S T E M TO P O L O G Y (B E H I N D T H E S C E N E S)

Resource
Manager

Language
Runtime(s)

Hosts

Query
Processor

RSM

Index Manager

Bw-tree++/ LLAMA++

Log Manager

IO Manager

Resource Governor

Transport

Database engine

Admission control

…

…

Planet Earth Azure regions Datacenters Stamps Fault domains

Cluster Machine Replica Database engine

Container

Various agents

R E S O U R C E H I E R A R C H Y

CONTAINERS

Logical resources “surfaced” to APIs as tables,

collections or graphs, which are made up of one or

more physical partitions or servers.

RESOURCE PARTITIONS

• Consistent, highly available, and resource-governed

coordination primitives

• Consist of replica sets, with each replica hosting an

instance of the database engine

Containers

Resource Partitions

CollectionsTables Graphs

Tenants

Leader

Follower

Follower

Forwarder

Replica Set

To remote resource partition(s)

Request Units (RUs) is a rate-based currency

Abstracts physical resources for performing requests

Key to multi-tenancy, SLAs, and COGS efficiency

Foreground and background activities

R E Q U E S T U N I T S

% IOPS% CPU% Memory

R E Q U E S T U N I T S

Normalized across various access methods

1 RU = 1 read of 1 KB document

Each request consumes fixed RUs

Applies to reads, writes, queries, and stored procedure

execution

GET

POST

PUT

Query

…

=

=

=

=

R E Q U E S T U N I T S

Normalized across various access methods

1 read of 1 KB document from a single partition

Each request consumes fixed RUs

Applies to reads, writes, queries, and stored procedure

execution

Provisioned in terms of RU/sec

Rate limiting based on amount of throughput provisioned

Can be increased or decreased instantaneously

Metered Hourly

Background processes like TTL expiration, index

transformations scheduled when quiescent

Min RU/sec

Max RU/sec

In
co

m
in

g
 R

e
q

u
e
st

s

Replica Quiescent

Rate limit

No rate limiting

E L A S T I C S C A L E O U T O F S T O R A G E A N D T H R O U G H P U T

SCALES AS YOUR APPS’ NEEDS CHANGE

Independently and elastically scale storage and
throughput across regions – even during unpredictable
traffic bursts – with a database that adapts to your
app’s needs.

• Elastically scale throughput from 10 to
100s of millions of requests/sec across
multiple regions

• Support for requests/sec for different
workloads

• Pay only for the throughput and
storage you need

Leveraging Azure Cosmos DB to automatically scale

your data across the globe

This module will reference partitioning in the context

of all Azure Cosmos DB modules and APIs.

PA R T I T I O N I N G

PA R T I T I O N S

Cosmos DB Container

(e.g. Collection)

Partition Key: City

Logical Partitioning Abstraction

Behind the Scenes:

Physical Partition Sets

hash(City)

Psuedo-random distribution of data over range of possible hashed values

PA R T I T I O N S

…

Partition 1 Partition 2 Partition n

Frugal # of Partitions based on actual storage and throughput needs

(yielding scalability with low total cost of ownership)

hash(City)

Pseudo-random distribution of data over range of possible hashed values

Cologne

Hamburg

…

Munich

Stuttgart

Berlin

Leipzig

Bremen

Frankfurt

Dresden

…

PA R T I T I O N S

What happens when partitions need to grow?

hash(City)

Pseudo-random distribution of data over range of possible hashed values

…

Partition 1 Partition 2 Partition n

Cologne

Hamburg

…

Munich

Stuttgart

Berlin

Leipzig

Bremen

Frankfurt

Dresden

…

PA R T I T I O N S

Partition Ranges can be dynamically sub-divided to seamlessly

grow database as the application grows while simultaneously

maintaining high availability.

Partition management is fully managed by Azure Cosmos DB,

so you don't have to write code or manage your partitions.

+

Partition x Partition x1 Partition x2

hash(User ID)

Pseudo-random distribution of data over range of possible hashed values

Stuttgart

Berlin

…

Cologne

Hamburg

Stuttgart

Berlin

Leipzig

Dresden

…

Cologne

Hamburg

…

PA R T I T I O N S

Best Practices: Design Goals for Choosing a Good Partition Key

• Distribute the overall request + storage volume

• Avoid “hot” partition keys

Steps for Success

• Ballpark scale needs (size/throughput)

• Understand the workload

• # of reads/sec vs writes per sec

• Use pareto principal (80/20 rule) to help optimize bulk of workload

• For reads – understand top 3-5 queries (look for common filters)

• For writes – understand transactional needs

General Tips

• Build a POC to strengthen your understanding of the workload and

iterate (avoid analyses paralysis)

• Don’t be afraid of having too many partition keys

• Partitions keys are logical

• More partition keys =more scalability

• Partition Key is scope for multi-record transactions and routing queries

• Queries can be intelligently routed via partition key

• Omitting partition key on query requires fan-out

D E M O

High Availability

• Automatic and Manual Failover

• Multi-homing API removes need for app

redeployment

Low Latency (anywhere in the world)

• Packets cannot move fast than the speed of light

• Sending a packet across the world under ideal

network conditions takes 100’s of milliseconds

• You can cheat the speed of light – using data

locality

• CDN’s solved this for static content

• Azure Cosmos DB solves this for dynamic content

T U R N K E Y G L O B A L
D I S T R I B U T I O N

T U R N K E Y G L O B A L D I S T R I B U T I O N

• Automatic and transparent replication worldwide

• Each partition hosts a replica set per region

• Customers can test end to end application

availability by programmatically simulating failovers

• All regions are hidden behind a single global URI

with multi-homing capabilities

• Customers can dynamically add / remove

additional regions at any time

Writes/

Reads
Reads

"airport" : “AMS" "airport" : “MEL"

West US

Container

"airport" : "LAX"

Local Distribution (via horizontal partitioning)

G
lo

b
a
l
D

is
tr

ib
u
ti
o

n
 (

o
f
re

so
u
rc

e
 p

a
rt

it
io

n
s)

Reads

30K transactions/sec
Writes/

Reads
Reads

Reads

West Europe

30K transactions/sec

Partition-key = "airport"

R E P L I C AT I N G D ATA G L O B A L LY

R E P L I C AT I N G D ATA G L O B A L LY

D E M O

Impossible for distributed

data store to simultaneously

provide more than 2 out of

the following 3 guarantees:

• Consistency

• Availability

• Partition Tolerance

B R E W E R ’ S C A P T H E O R E M

C O N S I S T E N C Y

(West US)
(East US)

(North Europe)

Value = 5
Value = 5

Value = 5

Update 5 => 6

What happens when

a network partition

is introduced?

Reader: What is the value?

Should it see 5? (prioritize availability)

Or does the system go offline until

network is restored? (prioritize

consistency)

6
6

PA C E L C T H E O R E M

In the case of network

partitioning (P) in a

distributed computer system,

one has to choose between

availability (A) and

consistency (C) (as per the

CAP theorem), but else (E),

even when the system is

running normally in the

absence of partitions, one has

to choose between latency (L)

and consistency (C).

C O N S I S T E N C Y

Value = 5
Value = 5

Value = 5

Update 5 => 6

6
6

Latency: packet of information can travel as fast as speed of light. Replication between distant geographic regions can take 100’s of milliseconds

C O N S I S T E N C Y

Value = 5
Value = 5

Value = 5

Update 5 => 6

6
6

Should it Reader B see 5 immediately?

(prioritize latency)

Does it see the same result as reader

A? (quorum impacts throughput)

Does it sit and wait for 5 => 6

propagate? (prioritize consistency)Reader B: What is the value?

Reader A: What is the value?

Strong Bounded-staleness Session Consistent prefix Eventual

F I V E W E L L - D E F I N E D C O N S I S T E N C Y M O D E L S

CHOOSE THE BEST CONSISTENCY MODEL FOR YOUR APP

Five well-defined, consistency models

Overridable on a per-request basis

Provides control over performance-consistency tradeoffs,

backed by comprehensive SLAs.

An intuitive programming model offering low latency and

high availability for your planet-scale app.

CLEAR TRADEOFFS

• Latency

• Availability

• Throughput

D E M Y S T I F Y I N G C O N S I S T E N C Y M O D E L S

Strong consistency

Guarantees linearizability. Once an operation is complete, it will be visible to

all readers in a strongly-consistent manner across replicas.

Eventual consistency

Replicas are eventually consistent with any operations. There is a potential for

out-of-order reads. Lowest cost and highest performance for reads of all

consistency levels.

Strong

Eventual

Bounded-staleness

Session

Consistent prefix

D E M Y S T I F Y I N G C O N S I S T E N C Y M O D E L S

Bounded-staleness

Consistent prefix. Reads lag behind writes by at most k prefixes or t interval.

Similar properties to strong consistency except within staleness window.

Session

Consistent prefix. Within a session, reads and writes are monotonic. This is

referred to as “read-your-writes” and “write-follows-reads”. Predictable

consistency for a session. High read throughput and low latency outside of

session.

Consistent Prefix

Reads will never see out of order writes.

D E M O

Azure Cosmos DB’s schema-less service automatically

indexes all your data, regardless of the data model, to

delivery blazing fast queries.

H A N D L E A N Y D ATA
W I T H N O S C H E M A O R
I N D E X I N G R E Q U I R E D

Item Color
Microwave

safe

Liquid

capacity
CPU Memory Storage

Geek

mug

Graphite Yes 16ox ??? ??? ???

Coffee

Bean

mug

Tan No 12oz ??? ??? ???

Surface

book

Gray ??? ??? 3.4 GHz

Intel

Skylake

Core i7-

6600U

16GB 1 TB SSD

• Automatic index management

• Synchronous auto-indexing

• No schemas or secondary indices needed

• Works across every data model
GEEK

I N D E X I N G J S O N D O C U M E N T S

{

"locations": [

{

"country": "Germany",

"city": "Berlin"

},

{

"country": "France",

"city": "Paris"

}

],

"headquarter": "Belgium",

"exports": [

{ "city": "Moscow" },

{ "city": "Athens" }

]

}

locations headquarter exports

0

country city

Germany Berlin

1

country city

France Paris

0 1

city

Athens

city

Moscow

Belgium

I N D E X I N G J S O N D O C U M E N T S

{

"locations": [

{

"country": "Germany",

"city": "Bonn",

"revenue": 200

}

],

"headquarter": "Italy",

"exports": [

{

"city": "Berlin",

"dealers": [

{ "name": "Hans" }

]

},

{ "city": "Athens" }

]

}

locations headquarter exports

0

country city

Germany Bonn

revenue

200

0 1

citycity

Berlin

Italy

dealers

0

name

Hans

I N D E X I N G J S O N D O C U M E N T S

Athens

locations headquarter exports

0

country city

Germany Bonn

revenue

200

0 1

citycity

Berlin

Italy

dealers

0

name

Hans

locations headquarter exports

0

country city

Germany Berlin

1

country city

France Paris

0 1

city

Athens

city

Moscow

Belgium

I N V E R T E D I N D E X

locations headquarter exports

0

country city

Germany

Berlin

revenue

200

0 1

city

Athens

city

Berlin

Italy

dealers

0

name

Hans

Bonn

1

country city

France Paris

Belgium

Moscow

I N D E X P O L I C I E S

CUSTOM INDEXING POLICIES

Though all Azure Cosmos DB data is indexed by default, you

can specify a custom indexing policy for your collections.

Custom indexing policies allow you to design and customize

the shape of your index while maintaining schema flexibility.

• Define trade-offs between storage, write and query

performance, and query consistency

• Include or exclude documents and paths to and from the

index

• Configure various index types

{

"automatic": true,

"indexingMode": "Consistent",

"includedPaths": [{

"path": "/*",

"indexes": [{

"kind": "Hash",

"dataType": "String",

"precision": -1

}, {

"kind": "Range",

"dataType": "Number",

"precision": -1

}, {

"kind": "Spatial",

"dataType": "Point"

}]

}],

"excludedPaths": [{

"path": "/nonIndexedContent/*"

}]

}

D E M O

Some data produced by applications are only useful

for a finite period of time:

• Machine-generated event data

• Application log data

• User session information

It is important that the database system systematically

purges this data at pre-configured intervals.

S H O R T - L I F E T I M E D ATA

T I M E - T O - L I V E (T T L)

AUTOMATICALLY PURGE DATA

Azure Cosmos DB allows you to set the length of time in

which documents live in the database before being

automatically purged. A document's "time-to-live" (TTL) is

measured in seconds from the last modification and can be

set at the collection level with override on a per-document

basis.

The TTL value is specified in the _ts field which exists on every

document.

• The _ts field is a unix-style epoch timestamp representing

the date and time. The _ts field is updated every time a

document is modified.

Once TTL is set, Azure Cosmos DB will automatically remove

documents that exist after that period of time.

E X P I R I N G R E C O R D S U S I N G T I M E - T O - L I V E

TTL BEHAVIOR

The TTL feature is controlled by TTL properties at two levels -

the collection level and the document level.

• DefaultTTL for the collection

• If missing (or set to null), documents are not deleted

automatically.

• If present and the value is "-1" = infinite –

documents don’t expire by default

• If present and the value is some number ("n") –

documents expire "n” seconds after last modification

• TTL for the documents:

• Property is applicable only if DefaultTTL is present

for the parent collection.

• Overrides the DefaultTTL value for the parent

collection.

The values are set in seconds and are treated as a delta from

the _ts that the document was last modified at.

Document

Document TTL

Default TTL

IoT, gaming, retail and operational logging applications

need to track and respond to tremendous amount of

data being ingested, modified or removed from a

globally-scaled database.

COMMON SCENARIOS

• Trigger notification for new items

• Perform real-time analytics on streamed data

• Synchronize data with a cache, search engine or data

warehouse.

M O D E R N R E A C T I V E
A P P L I C AT I O N S

C H A N G E F E E D

Persistent log of records within an Azure Cosmos DB

container. Preseneted in the order in which they were

modified

C H A N G E F E E D S C E N A R I O S

Event/stream
processing app tier

C H A N G E F E E D W I T H PA R T I T I O N S

Consumer parallelization

Change feed listens for any changes in Azure Cosmos DB

collection. It then outputs the sorted list of documents that

were changed in the order in which they were modified.

The changes are persisted, can be processed asynchronously

and incrementally, and the output can be distributed across

one or more consumers for parallel processing. The change

feed is available for each partition key range within the

document collection, and thus can be distributed across one

or more consumers for parallel processing.

Consumer 1

Consumer 2

Consumer 3

C H A N G E F E E D P R O C E S S O R L I B R A R Y

https://www.nuget.org/packages
/Microsoft.Azure.DocumentDB.C
hangeFeedProcessor/

https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.ChangeFeedProcessor

Run native JavaScript server-side programming

logic to performic atomic multi-record transactions.

This module will reference programming in the

context of the SQL API.

P R O G R A M M I N G

GEEK

C O N T R O L C O N C U R R E N C Y U S I N G E TA G S

OPTIMISTIC CONCURRENCY

• The SQL API supports optimistic concurrency control (OCC) through HTTP entity tags, or ETags

• Every SQL API resource has an ETag system property, and the ETag value is generated on the server every time a document is

updated.

• If the ETag value stays constant – that means no other process has updated the document. If the ETag value unexpectedly

mutates – then another concurrent process has updated the document.

• ETags can be used with the If-Match HTTP request header to allow the server to decide whether a resource should be

updated:

HTTP 412

BENEFITS

• Familiar programming language

• Atomic Transactions

• Built-in Optimizations

• Business Logic Encapsulation

S TO R E D P R O C E D U R E S

M U LT I - D O C U M E N T T R A N S A C T I O N S

DATABASE TRANSACTIONS

In a typical database, a transaction can be defined as a

sequence of operations performed as a single logical

unit of work. Each transaction provides ACID guarantees.

In Azure Cosmos DB, JavaScript is hosted in the same

memory space as the database. Hence, requests made

within stored procedures and triggers execute in the

same scope of a database session.

Create
New

Document

Query
Collection

Update
Existing

Document

Delete
Existing

Document

Stored procedures utilize snapshot

isolation to guarantee all reads

within the transaction will see a

consistent snapshot of the data

T R A N S A C T I O N C O N T I N U AT I O N M O D E L

CONTINUING LONG-RUNNING TRANSACTIONS

• JavaScript functions can implement a continuation-based model

to batch/resume execution

• The continuation value can be any value of your own choosing.

This value can then be used by your applications to resume a

transaction from a new “starting point”

Bulk Create Documents

Return a “pointer” to resume later

Observe
Return
Value

Try Create
Each

Document
Done

